Complement system in rheumatic diseases

The complement system

- Classical pathway
 - Activation of C3
 - Deposition of C3b
 - C3-convertase
 - Release of anaphylatoxins
 - Membrane Attack Complex (C5-9)

- Alternative pathway
 - Activation of C3

- Lectin pathway
 - MBL, ficolins
 - C1r, C1s, C1q

Spontaneous hydrolysis

C3 → C3b → C3a

Diseases associated with excessive complement activation

- Ischemia/reperfusion (stroke, bypass)
- Transplantation (xeno)
- Burn injuries
- Dialysis
- Asthma
- SLE
- Rheumatoid arthritis
- Haemolytic uremic syndrome
- Sepsis
- SLE
- Rheumatoid arthritis
- Haemolytic uremic syndrome
- Sepsis
- SLE
- Rheumatoid arthritis
- Haemolytic uremic syndrome
- Sepsis
- SLE
- Rheumatoid arthritis
- Haemolytic uremic syndrome
- Sepsis

CRP in Lund epidemiologic cohort of patients with rheumatoid arthritis

- N > 1000 at each time point
- Methotrexate
- TNF-inhibitors

0.7% adults in Sweden

- More often women
Evidence that complement is involved in RA

- Complement consumption from blood in flares
- Complement fragments in synovial fluid and on synovial membrane
- Genetic analysis in animal models
- Knock-out mice are resistant

Active complement

Complement inhibited

Human cartilage

Fibromodulin activates complement

COMP is produced in chondrocytes
Used as marker for joint destruction

Cartilage oligomeric matrix protein (COMP) activates alternative pathway

Assay measuring COMP-C3b complexes
Arthritis development in mice vaccinated against C5a

SLE: systemic lupus erythematosus

Autoantibodies, immune complexes = complement activation = inflammation

7000 in Sweden
90% women
flares
autoantibodies

Neutrophil extracellular traps (NETs)

- Secreted chromatin
- Mainly from neutrophils
- Concentrate anti-bacterial enzymes
- To catch/kill bacteria
- Induced by LPS + IL 8, PMA, C5a, bacteria, fungi, platelets

NETs in SLE?

- Autoantibodies in SLE patients against: DNA, histones, nuclear antigens
- NETs that are not removed may be acting as source for these antigens
- NETs are degraded by DNAsae in serum and SLE patients have low DNAsae activity
- NETs can potentially activate complement?
SLE Disease Activity Index (SLEDAI)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>High degrading (n = 67)</th>
<th>Low degrading (n = 27)</th>
<th>p-value (Pearson)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seizure</td>
<td>1 (1.5)</td>
<td>0 (0)</td>
<td>0.5</td>
</tr>
<tr>
<td>Psychosis</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>Visual disturbance</td>
<td>5 (7.5)</td>
<td>2 (7.5)</td>
<td>0.99</td>
</tr>
<tr>
<td>Lupus headache</td>
<td>2 (3)</td>
<td>0 (0)</td>
<td>0.4</td>
</tr>
<tr>
<td>Cerebrovascular accident</td>
<td>1 (1.5)</td>
<td>1 (3.5)</td>
<td>2.000</td>
</tr>
<tr>
<td>Meningitis</td>
<td>8 (12)</td>
<td>3 (11)</td>
<td>0.9</td>
</tr>
<tr>
<td>Arthritis</td>
<td>2 (3)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>10 (15)</td>
<td>3 (11)</td>
<td>0.99</td>
</tr>
<tr>
<td>Renal failure</td>
<td>2 (3)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>Fever</td>
<td>4 (6)</td>
<td>4 (15)</td>
<td>0.001</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>6 (9)</td>
<td>7 (26)</td>
<td>0.03</td>
</tr>
<tr>
<td>Leukopenia b</td>
<td>6 (9)</td>
<td>4 (15)</td>
<td>0.4</td>
</tr>
<tr>
<td>Low complement</td>
<td>30 (45)</td>
<td>22 (81)</td>
<td>0.001</td>
</tr>
<tr>
<td>dsDNA antibodies</td>
<td>20 (30)</td>
<td>25 (93)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Anticardiolipin</td>
<td>2 (3)</td>
<td>3 (11)</td>
<td>0.9</td>
</tr>
<tr>
<td>Antiphospholipid antibodies</td>
<td>4 (6)</td>
<td>3 (11)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

NETs activate complement

Opsonisation with complement increases antibody production against antigens

Follow up of SLE patients

Antibodies affect NET degradation
NETs are not degraded \rightarrow \text{NETs activate complement} \rightarrow \text{More antibodies against NETs produced}

\text{Complement inhibitors}

\text{Mutated in hemolytic uremic syndrome}
\text{and age related macula degeneration}

\text{SLE patients carrying mutations in complement inhibitors CD46/FH develop nephritis earlier}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{sle_patients}
\caption{SLE patients carrying mutations in complement inhibitors CD46/FH develop nephritis earlier}
\end{figure}

Conclusions

✓ some cartilage molecules activate complement, which may contribute to joint damage in arthritis
✓ mutations in complement inhibitors accelerate onset of nephritis in SLE
✓ impaired degradation of NETs may lead to activation of complement and autoantibody production in SLE
✓ involvement of complement in pathology of SLE and rheumatoid arthritis opens for novel diagnostic tools and treatments